CURVE HOIST INTRODUCTION

CNBM INTERNATIONAL CORPORATION

Specification of CMAX Curve Hoist SCQ60/SCQ120

Main technical performance parameter:

Item	SCQ60	SCQ120	Remark
Rated load	600 kg	1200 kg	
Rated speed	$0 \sim 60 \mathrm{~m} / \mathrm{min}$	$0 \sim 60 \mathrm{~m} / \mathrm{min}$	VVVF+PLC control
Cage dimension length \times width \times height	$2.1 \times 0.85 \times 2.1 \mathrm{~m}$	$2.5 \times 1.3 \times 2.1 \mathrm{~m}$	
Mast size	$450 \times 280 \times 1508 \mathrm{~mm}$	$650 \times 450 \times 1508 \mathrm{~mm}$	Galvanized
Rated passenger	8	16	
Adaptable angle for	$-8^{\circ} \sim+21^{\circ}$	$-10^{\circ} \sim+25^{\circ}$	
curve variation	180 m	250 m	
Max. height			

Curve building hoist is designed on the basis of mesh driving principle of pinion and rack. With the mesh driving, cage travels along the curve so as to transport the passengers to the requested place. The specially-treated track parallels with the exterior of hyperbola cooling tower, the floating leveling mechanism ensures the cage's balance and the out-fixed driving mechanism not only save the cage's space but also strengthen the cage's stability during the operation.

SCQ serial building hoist's main features are as below:

1. Control system

Building hoist's electrical control system is of VVVF+PLC control system.

VVVF control:
Equipped with the currently advanced technology of VVVF and PLC in the world, the hoist could travel at the speed of $0 \sim 60 \mathrm{~m} / \mathrm{min}$ and realize the stepless speed regulation at the time of starting, accelerating \& decelerating and braking so as to reduce the pinion's impact on the rack when starting and braking, to improve the hoist's stability and comfortability when traveling, and to extend the working life of the hoist. The regenerative braking is used for the hoist's slowing and stopping and the mechanical braking device becomes active at the speed of zero so as to avoid wearing the braking disc. In addition, this mechanism can be used upon the condition of the wide range of voltage fluctuation, which is $\pm 5 \%$ (50 HZ). VVVF+PLC system is adopted with vector control method, which could control the speed at the precision of 0.01% and realize the hoist's accurate position-stopping. VVVF also has the functions of overvoltage protection, undervoltage protection, overcurrent protection, overload protection, motor protection etc.

The VVVF+PLC system is also adopted with current-limiting function, and this function could make the motor start by a low electric current and reduce the affect against other electricity consuming equipments at the construction site.

2. Easy operation

Simple operating panel, which control the hoist's ascending, descending, emergency stopping, alarm-starting and speed-adjusting, ensures a user-friendly operation.

The VVVF+PLC system has 4 speed shifts. With its low speed, shift 1 is of high safety and convenience for installation, maintenance \& repair. Shift 2, 3 and 4, as the regular running speed (each speed could be adjusted according to the actual need at the construction site), which can be changed steplessly with the different needs.

3. Perfect safety devices:

Equipped with a complete set of safety devices, including SAJ30-1.2 anti-drop safety device, top \& bottom limit switches, top \& bottom 3-phase switches, buffer, safety hooks, and electro-mechanical interlock, the hoist can run safely under in many circumstances. Among those safety devices, SAJ30-1.2 anti-drop safety device is patented product, which is adopted with
advanced technology of non-concussion and checking friction degree without opening machine. Top \& bottom limit switches and top \& bottom 3-phase switches ensure the hoist's cage not to over-climb and not to collide against the bottom. When the hoist is traveling to the top or bottom part at a high speed, with the up \& down speed-slowing switches, the hoist can automatically decelerate in advance and brake steadily.

4. Automatically leveling

In order to make the cage base keep leveling when traveling along the curve, there are two ways to adjust the leveling of cage base: manually-leveling mechanism and automatically-leveling mechanism. When the cage inclines inside or outside to some extent, the limit devices will knock against the limit switch. Consequently, the leveling mechanism will work, making the cage adjust the position around the base turning axis. When the cage becomes leveling, the limit device and the limit switch will separate. This is an automatic process. While the manually-leveling mechanism is operated by the driver to adjust the cage's inclining angle so that the cage could stay level.

$\alpha \leqslant 25^{\circ} \cdot \beta \leqslant 10^{\circ}$
The angle degree of hyperbola cooling tower

SCQ60 Electric parts list

Code No.	Qty.	Name	Type	
U	1	Inverter	VS-616G7-4030	
AP	1	Programmable control(PLC)	CPM1A-30CDR-A	
ZC	1	contactor	3TF4922-0X M0	$\sim 220 \mathrm{~V}$
WLC , WMC	2	contactor	LC1-D0901	~220V
ZD	1	contactor	3TF4222-0X M0	$\sim 220 \mathrm{~V}$
FZD	1	contactor	3TB4022-0X M0	$\sim 220 \mathrm{~V}$
TZC	1	contactor	3TB4022-0X M0	$\sim 220 \mathrm{~V}$
NTC , WTC	2	contactor	3TB4022-0X M0	~220V
B1	1	transformer	JBK1-400VA,415/220V	
QF	1	total power switch	DZ20L-160/4300, 100A	
QF1	1	circuit breaker	C65N 2P D6	
QF2	1	circuit breaker	DZ47 2P D3	
QF3	1	circuit breaker for lamp	DZ47 1P C3	
QF4	1	circuit breaker	DZ47 2P D3	
QF5	1	circuit breaker	DZ47 3P D5	
JA	1	Emergency stop button	XB2-BS542C	inside cage
DJA	1	emergency stop button	XB2-BS542C	$\begin{aligned} & \text { cage } \\ & \text { roof } \end{aligned}$
HSA	1	Up and Down switch	XD2PA-24CR	inside cage
SB1	1	up and down switch	ZB2BD5C+ZB2BZ103C	cage roof
DKA	1	lamp switch	ZB2BD2C+ZB2BZ102C	
DS	1	EL.lock	ZB2BG2C+ZB2BZ103C	
HKA	1	conversion switch of cage roof and cage inside	ZB2BD2C+ZB2BZ102C	
QA	1	start and bell button	ZB2BA3C+ZB2BZ103C	
2K	1	change speed switch on	ZB2BD3C+ZB2BZ104C	cage roof
1K	1	change speed switch	LW39B-16H0123/Z	inside cage
$\begin{aligned} & \text { DPA , } \\ & \text { NPA } \end{aligned}$	2	leveling switch	ZB2BD3C+ZB2BZ103C	
AB1	1	brake unit	CDBR-4045	
$\begin{aligned} & \mathrm{RR} 1 \\ & \mathrm{RR} 2 \end{aligned}$	5	discharge resistor	2500W 140	

Code No.	Qty.	Name	Type	
M1, M2	2	motor	YZEJ132M-4 11KW	
BRX	1	relay	MY2NJ-CR	$\sim 220 \mathrm{~V}$
$\begin{aligned} & \text { ZLC } \\ & \text { BX } \end{aligned}$	2	relay	HH52P	~220V
JXK	1	3-phase limit switch	QS5-63P/4T	
MK1 MK2	2	cage ramp door switch	LXK3-20S/B	
MK3	1	trap door switch	LXK3-20S/T	
MK4	1	cage sliding door switch	LXK3-20S/B	
AQK	1	safety device switch	LX56-11M	
SXK	1	Upper limit switch	LXK3-20S/T	
XXK	1	Lower limit switch	LXK3-20S/T	
SJK	1	top decelerate switch	LXK3-20S/T	
XJK	1	bottom decelerate switch	LXK3-20S/T	
WLK	1	enclosure gate switch	LXK3-20S/B	
WXK, NXK	2	leveling limit switch	LXK3-20S/T	
V	1	rectifier	36MB160A	
YR	1	Varistor	MY20D-470V TL-90	
H	1	indicator light	AD16-22D/R	
DL	1	bell	Ф75 ~220	
EL	1	lamp	$\sim 220 \mathrm{~V} 8 \mathrm{~W}$	
F1, F2	2	fan	$\sim 380 \mathrm{~V} \varphi 150$	
F3	1	fan	$\sim 380 \mathrm{~V} \quad \varphi 120$	

SCQ60 Electric schematic diagram

6.9,

Pictures of actual case

